资源类型

期刊论文 373

年份

2024 2

2023 29

2022 24

2021 25

2020 26

2019 22

2018 22

2017 15

2016 11

2015 12

2014 14

2013 17

2012 15

2011 14

2010 17

2009 20

2008 31

2007 23

2006 5

2005 3

展开 ︾

关键词

电动汽车 3

动力电池 2

城市河流 2

微反应器 2

数值模拟 2

ADV 1

CCUS 1

CFD 1

CO2利用 1

Cas12a 1

Chebyshev多项式 1

Colebrook隐式方程 1

HY-2 卫星 1

Matlab 1

PIV 1

Preissmann格式 1

S 特性 1

SIMPLEC算法 1

ZEBRA 电池 1

展开 ︾

检索范围:

排序: 展示方式:

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redoxflow battery

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid

Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 399-409 doi: 10.1007/s11705-020-1934-9

摘要: Description of electrolyte fluid dynamics in the electrode compartments by mathematical models can be a powerful tool in the development of redox flow batteries (RFBs) and other electrochemical reactors. In order to determine their predictive capability, turbulent Reynolds-averaged Navier-Stokes (RANS) and free flow plus porous media (Brinkman) models were applied to compute local fluid velocities taking place in a rectangular channel electrochemical flow cell used as the positive half-cell of a cerium-based RFB for laboratory studies. Two different platinized titanium electrodes were considered, a plate plus a turbulence promoter and an expanded metal mesh. Calculated pressure drop was validated against experimental data obtained with typical cerium electrolytes. It was found that the pressure drop values were better described by the RANS approach, whereas the validity of Brinkman equations was strongly dependent on porosity and permeability values of the porous media.

关键词: CFD simulation     porous media     porous electrode     pressure drop     redox flow battery    

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING

《能源前沿(英文)》 2018年 第12卷 第2期   页码 198-224 doi: 10.1007/s11708-018-0552-4

摘要: Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed.

关键词: electrochemical energy storage     redox flow battery     vanadium    

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 401-409 doi: 10.1007/s11708-017-0496-0

摘要: As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH) nanoparticles as the cathode material, nano-sized β-Ni(OH) particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH) was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH) could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH) was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH) and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

关键词: nano-suspension flow battery     β-Ni(OH)2     scanning electronic microscopy (SEM)     X-ray diffraction (XRD)     X-ray adsorption near edge structure (XANES)     extended X-ray absorption fine structure (EXAFS)    

End-of-life batteries management and material flow analysis in South Korea

Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1019-x

摘要: Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.

关键词: End-of-life battery     Recycling     Material flow analysis (MFA)     Extended producer responsibility (EPR)     Resource recovery    

用于固定式大规模储能的液流电池

尹彦斌, 李先锋

《工程(英文)》 2023年 第21卷 第2期   页码 42-44 doi: 10.1016/j.eng.2022.10.007

Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle

Nitesh Ganesh BHAT, B. Rajanarayan PRUSTY, Debashisha JENA

《能源前沿(英文)》 2017年 第11卷 第2期   页码 184-196 doi: 10.1007/s11708-017-0465-7

摘要: This paper applies a cumulant-based analytical method for probabilistic load flow (PLF) assessment in transmission and distribution systems. The uncertainties pertaining to photovoltaic generations and aggregate bus load powers are probabilistically modeled in the case of transmission systems. In the case of distribution systems, the uncertainties pertaining to plug-in hybrid electric vehicle and battery electric vehicle charging demands in residential community as well as charging stations are probabilistically modeled. The probability distributions of the result variables (bus voltages and branch power flows) pertaining to these inputs are accurately established. The multiple input correlation cases are incorporated. Simultaneously, the performance of the proposed method is demonstrated on a modified Ward-Hale 6-bus system and an IEEE 14-bus transmission system as well as on a modified IEEE 69-bus radial and an IEEE 33-bus mesh distribution system. The results of the proposed method are compared with that of Monte-Carlo simulation.

关键词: battery electric vehicle     extended cumulant method     photovoltaic generation     plug-in hybrid electric vehicle     probabilistic load flow    

Photoreduction adjusted surface oxygen vacancy of BiMoO for boosting photocatalytic redox performance

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1937-1948 doi: 10.1007/s11705-023-2353-5

摘要: In this study, Bi2MoO6 with adjustable rich oxygen vacancies was prepared by a novel and simple solvothermal-photoreduction method which might be suitable for a large-scale production. The experiment results show that Bi2MoO6 with rich oxygen vacancies is an excellent photocatalyst. The photocatalytic ability of BMO-10 is 0.3 and 3.5 times higher than that of the pristine Bi2MoO6 for Rhodamine B degradation and Cr(VI) reduction, respectively. The results display that the band energy of the samples with oxygen vacancies was narrowed and the light absorption was broadened. Meanwhile, the efficiency of photogenerated electron-holes was increased and the separation and transfer speed of photogenerated carriers were improved. Therefore, this work provides a convenient and efficient method to prepare potential adjustable oxygen vacancy based photocatalysts to eliminate the pollution of dyes and Cr(VI) in water.

关键词: Bi2MoO6     oxygen vacancies     photoreduction     Cr(VI)     RhB    

High butanol production by regulating carbon, redox and energy in Clostridia? ?

Jianfa Ou,Chao Ma,Ningning Xu,Yinming Du,Xiaoguang (Margaret) Liu

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 317-323 doi: 10.1007/s11705-015-1522-6

摘要: Butanol is a promising biofuel with high energy intensity and can be used as gasoline substitute. It can be produced as a sustainable energy by microorganisms (such as Clostridia) from low-value biomass. However, the low productivity, yield and selectivity in butanol fermentation are still big challenges due to the lack of an efficient butanol-producing host strain. In this article, we systematically review the host cell engineering of Clostridia, focusing on (1) various strategies to rebalance metabolic flux to achieve a high butanol production by regulating the metabolism of carbon, redox or energy, (2) the challenges in pathway manipulation, and (3) the application of proteomics technology to understand the intracellular metabolism. In addition, the process engineering is also briefly described. The objective of this review is to summarize the previous research achievements in the metabolic engineering of and provide guidance for future novel strain construction to effectively produce butanol.

关键词: Clostridia     butanol     biofuel     metabolism     carbon     redox     energy    

A brief review on key technologies in the battery management system of electric vehicles

Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG

《机械工程前沿(英文)》 2019年 第14卷 第1期   页码 47-64 doi: 10.1007/s11465-018-0516-8

摘要: Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

关键词: battery management system     battery modelling     battery state estimation     battery charging    

Probing the redox process of

Rui Lu, Wei Chen, Wen-Wei Li, Guo-Ping Sheng, Lian-Jun Wang, Han-Qing Yu

《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0905-y

摘要: Fluorescece spectroelectrochemistry is used to probe redox process of benzoquinone. The benzoquinone reduction state has a lower fluorescence quantum efficiency. CVF and DCVF can reveal more information about benzoquinone redox reactions. This method can analyze compounds with fluorescence and electrochemical activities. Quinones are common organic compounds frequently used as model dissolved organic matters in water, and their redox properties are usually characterized by either electrochemical or spectroscopic methods separately. In this work, electrochemical methodology was combined with two fluorescence spectroelectrochemical techniques, cyclic volta- fluorescence spectrometry (CVF) and derivative cyclic volta- fluorescence spectrometry (DCVF), to determine the electrochemical properties of -benzoquinone in dimethyl sulfoxide, an aprotic solution. The CVF results show that the electrochemical reduction of -benzoquinone resulted in the formation of radical anion and dianion, which exhibited a lower fluorescence intensity and red-shift of the emission spectra compared to that of -benzoquinone. The fluorescence intensity was found to vary along with the electrochemical oxidation and reduction of -benzoquinone. The CVF and DCVF results were in good consistence. Thus, the combined method offers a powerful tool to investigate the electrochemical process of -benzoquinone and other natural organic compounds.

关键词: p-Benzoquinone     Electrochemistry     Fluorescence     Spectroelectrochemistry     Derivative cyclic volta fluorescence    

Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich

Rongchang WANG, Xinmin ZHAN, Yalei ZHANG, Jianfu ZHAO

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 48-56 doi: 10.1007/s11783-011-0305-7

摘要: Nitrogen removal performance and nitrifying population dynamics were investigated in a redox stratified membrane biofilm reactor (RSMBR) under oxygen limited condition to treat ammonium-rich wastewater. When the loading rate increased from 11.1±1.0 to , the nitrogen removal in the RSMBR system increased from 18.0±9.6 mgN·d to 128.9±61.7 mgN·d . Shortcut nitrogen removal was achieved with nitrite accumulation of about . Confocal micrographs showed the stratified distributions of nitrifiers and denitrifiers in the membrane aerated biofilms (MABs) at day 120, i.e., ammonia and nitrite oxidizing bacteria (AOB and NOB) were dominant in the region adjacent to the membrane, while heterotrophic bacteria propagated at the top of the biofilm. Real-time qPCR results showed that the abundance of gene was two orders of magnitude higher than the abundance of gene in the MABs. However, the gene was always detected during the operation time, which indicates the difficulty of complete washout of NOB in MABs. The growth of heterotrophic bacteria compromised the dominance of nitrifiers in biofilm communities, but it enhanced the denitrification performance of the RSMBR system. Applying a high ammonia loading together with oxygen limitation was found to be an effective way to start nitrite accumulation in MABs, but other approaches were needed to sustain or improve the extent of nitritation in nitrogen conversion in MABs.

关键词: ammonium-rich wastewater     membrane biofilm reactor     nitrification     redox stratification     shortcut nitrogen removal    

Mapping the trends and prospects of battery cathode materials based on patent landscape

《能源前沿(英文)》   页码 822-832 doi: 10.1007/s11708-023-0900-x

摘要: Advancing portable electronics and electric vehicles is heavily dependent on the cutting-edge lithium-ion (Li-ion) battery technology, which is closely linked to the properties of cathode materials. Identifying trends and prospects of cathode materials based on patent analysis is considered a kernel to optimize and refine battery related markets. In this paper, a patent analysis is performed on 6 popular cathode materials by comprehensively considering performance comparison, development trend, annual installed capacity, technology life cycle, and distribution among regions and patent assignees. In the technology life cycle, the cathode materials majorly used in electric vehicle have entered maturity stage, while the lithium cobalt oxide (LCO) cathode that is widely used in portable electronics is still in the growth stage. In global patent distributions, China holds more than 50% of total patents. In the top 10 patent assignees of 6 cathode materials, 2 institutes are from China with the rest being Japan (6) and Republic of Korea (2), indicating that the technology of cathode materials in China is relatively scattered while cathode research is highly concentrated in Japan and Republic of Korea. Moreover, the patent distribution has to consider practical issues as well as the impacts of core patents. For example, the high cost discourages the intention of applying international patents. This paper is expected to stimulate battery research, understand technical layout of various countries, and probably forecast innovative technology breakthroughs.

关键词: patent analysis     cathode     batteries     technology life cycle    

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 296-306 doi: 10.1007/s11708-018-0605-8

摘要: This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation, and maximum power extraction whenever possible from the photovoltaic panels. The powertrain controller consists of two levels of controllers named lower level controllers and a high-level control algorithm. The lower level controllers are designed to perform individual tasks such as maximum power point tracking, battery charging, and load regulation. The perturb and observe based maximum power point tracking algorithm is used for extracting maximum power from solar photovoltaic panels while the battery charging controller is designed using a PI controller. A high-level control algorithm is then designed to switch between the lower level controllers based on different operating conditions such as high state of charge, low state of charge, maximum battery current, and heavy load by respecting the constraints formulated. The developed algorithm is evaluated using theoretical simulation and experimental studies. The simulation and experimental results are presented to validate the proposed technique.

关键词: battery management system     hybrid electric vehicles (HEVs)     maximum power point tracking (MPPT)     solar photovoltaic    

Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic

Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1252-y

摘要: Abstract • Regulation of redox conditions promotes the generation of free radicals on HM. • HM-PFRs can be fractionated into active and inactive types depending on stability. • The newly produced PFRs readily release electrons to oxygen and generate ROS. • PFR-induced ROS mediate the transformation of organic contaminants adsorbed on HM. The role of humic substance-associated persistent free radicals (PFRs) in the fate of organic contaminants under various redox conditions remains unknown. This study examined the characterization of original metal-free peat humin (HM), and HM treated with varying concentrations of H2O2 and L-ascorbic acid (VC) (assigned as H2O2-HM and VC-HM). The concentration of PFRs in HM increased with the addition of VC/H2O2 at concentrations less than 0.08 M. The evolution of PFRs in HM under different environmental conditions (e.g., oxic/anoxic and humidity) was investigated. Two types of PFRs were detected in HM: a relatively stable radical existed in the original sample, and the other type, which was generated by redox treatments, was relatively unstable. The spin densities of VC/H2O2-HM readily returned to the original value under relatively high humidity and oxic conditions. During this process, the HM-associated “unstable” free radicals released an electron to O2, inducing the formation of reactive oxygen species (ROS, i.e., •OH and •O2−). The generated ROS promoted the degradation of polycyclic aromatic hydrocarbons based on the radical quenching measurements. The transformation rates followed the order naphthalene>phenanthrene>anthracene>benzo[a]pyrene. Our results provide valuable insight into the HM-induced transformation of organic contaminants under natural conditions.

关键词: Humic substance     Polycyclic aromatic hydrocarbons (PAHs)     Persistent free radicals (PFRs)     Redox     Reactive oxygen species (ROS)    

标题 作者 时间 类型 操作

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redoxflow battery

期刊论文

Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid

Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas

期刊论文

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING

期刊论文

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

期刊论文

End-of-life batteries management and material flow analysis in South Korea

Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun

期刊论文

用于固定式大规模储能的液流电池

尹彦斌, 李先锋

期刊论文

Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle

Nitesh Ganesh BHAT, B. Rajanarayan PRUSTY, Debashisha JENA

期刊论文

Photoreduction adjusted surface oxygen vacancy of BiMoO for boosting photocatalytic redox performance

期刊论文

High butanol production by regulating carbon, redox and energy in Clostridia? ?

Jianfa Ou,Chao Ma,Ningning Xu,Yinming Du,Xiaoguang (Margaret) Liu

期刊论文

A brief review on key technologies in the battery management system of electric vehicles

Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG

期刊论文

Probing the redox process of

Rui Lu, Wei Chen, Wen-Wei Li, Guo-Ping Sheng, Lian-Jun Wang, Han-Qing Yu

期刊论文

Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich

Rongchang WANG, Xinmin ZHAN, Yalei ZHANG, Jianfu ZHAO

期刊论文

Mapping the trends and prospects of battery cathode materials based on patent landscape

期刊论文

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

期刊论文

Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic

Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma

期刊论文